Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.754
Filtrar
1.
Ren Fail ; 46(1): 2332492, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38584135

RESUMO

Acute kidney injury (AKI) is associated with a high mortality rate. Pathologically, renal ischemia/reperfusion injury (RIRI) is one of the primary causes of AKI, and hypoxia-inducible factor (HIF)-1α may play a defensive role in RIRI. This study assessed the role of hypoxia-inducible factor 1α (HIF-1α)-mediated mitophagy in protection against RIRI in vitro and in vivo. The human tubular cell line HK-2 was used to assess hypoxia/reoxygenation (H/R)-induced mitophagy through different in vitro assays, including western blotting, immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reactive oxygen species (ROS) measurement. Additionally, a rat RIRI model was established for evaluation by renal histopathology, renal Doppler ultrasound, and transmission electron microscopy to confirm the in vitro data. The selective HIF-1α inhibitor LW6 reduced H/R-induced mitophagy but increased H/R-induced apoptosis and ROS production. Moreover, H/R treatment enhanced expression of the FUN14 domain-containing 1 (FUNDC1) protein. Additionally, FUNDC1 overexpression reversed the effects of LW6 on the altered expression of light chain 3 (LC3) BII and voltage-dependent anion channels as well as blocked the effects of HIF-1α inhibition in cells. Pretreatment of the rat RIRI model with roxadustat, a novel oral HIF-1α inhibitor, led to decreased renal injury and apoptosis in vivo. In conclusion, the HIF-1α/FUNDC1 signaling pathway mediates H/R-promoted renal tubular cell mitophagy, whereas inhibition of this signaling pathway protects cells from mitophagy, thus aggravating apoptosis, and ROS production. Accordingly, roxadustat may protect against RIRI-related AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Animais , Humanos , Ratos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Apoptose , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia , Rim/patologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
2.
Food Chem Toxicol ; 187: 114637, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582345

RESUMO

Diclofenac (DF)-induced acute kidney injury (AKI) is characterized by glomerular dysfunction and acute tubular necrosis. Due to limited treatment approaches, effective and safe drug therapy to protect against such AKI is still needed. Diacetylrhein (DAR), an anthraquinone derivative, has different antioxidant and anti-inflammatory properties. Therefore, the aim of the current study was to investigate the renoprotective effect of DAR on DF-induced AKI while elucidating the potential underlying mechanism. Our results showed that DAR (50 and 100 mg/kg) markedly abrogated DF-induced kidney dysfunction decreasing SCr, BUN, serum NGAL, and serum KIM1 levels. Moreover, DAR treatment remarkably maintained renal redox balance and reduced the levels of pro-inflammatory biomarkers in the kidney. Mechanistically, DAR boosted Nrf2/HO-1 antioxidant and anti-inflammatory response in the kidney while suppressing renal TLR4/NF-κB and NLRP3/caspase-1 inflammatory signaling pathways. In addition, DAR markedly inhibited renal pyroptosis via targeting of GSDMD activation. Collectively, this study confirmed that the interplay between Nrf2/HO-1 and TLR4/NF-κB/NLRP3/Caspase-1 signaling pathways and pyroptotic cell death mediates DF-induced AKI and reported that DAR has a dose-dependent renoprotective effect on DF-induced AKI in rats. This effect is due to powerful antioxidant, anti-inflammatory, and anti-pyroptotic activities that could provide a promising treatment approach to protect against DF-induced AKI.


Assuntos
Injúria Renal Aguda , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Diclofenaco/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Antioxidantes/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/tratamento farmacológico , Rim , Anti-Inflamatórios/uso terapêutico , Caspases/metabolismo
3.
Ren Fail ; 46(1): 2337287, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38627212

RESUMO

OBJECTIVE: This study explored the molecular mechanisms by which dexmedetomidine (Dex) alleviates cisplatin (CP)-induced acute kidney injury (AKI) in rats. METHODS: CP-induced AKI models were established, and Dex was intraperitoneally injected at different concentrations into rats in the model groups. Subsequently, rats were assigned to the control, CP, CP + Dex 10 µg/kg, and CP + Dex 25 µg/kg groups. After weighing the kidneys of the rats, the kidney arterial resistive index was calculated, and CP-induced AKI was evaluated. In addition, four serum biochemical indices were measured: histopathological damage in rat kidneys was detected; levels of inflammatory factors, interleukin (IL)-1ß, IL-18, IL-6, and tumor necrosis factor alpha, in kidney tissue homogenate of rats were assessed through enzyme-linked immunosorbent assay (ELISA); and levels of NLRP-3, caspase-1, cleaved caspase-1, gasdermin D (GSDMD), and GSDMD-N in kidney tissues of rats were determined via western blotting. RESULTS: Dex treatment reduced nephromegaly and serum clinical marker upregulation caused by CP-induced AKI. In addition, hematoxylin and eosin staining revealed that Dex treatment relieved CP-induced kidney tissue injury in AKI rats. ELISA analyses demonstrated that Dex treatment reduced the upregulated levels of proinflammatory cytokines in the kidney tissue of AKI rats induced by CP, thereby alleviating kidney tissue injury. Western blotting indicated that Dex alleviated CP-induced AKI by inhibiting pyroptosis mediated by NLRP-3 and caspase-1. CONCLUSION: Dex protected rats from CP-induced AKI, and the mechanism may be related to NLRP-3/Caspase-1-mediated pyroptosis.


Assuntos
Injúria Renal Aguda , Dexmedetomidina , Ratos , Animais , Dexmedetomidina/efeitos adversos , Cisplatino/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Rim/patologia , Interleucina-1beta , Caspases/efeitos adversos
4.
Ren Fail ; 46(1): 2313176, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38482886

RESUMO

OBJECTIVE: This study was designed to observe the effect of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway activity on sepsis-associated acute kidney injury (SA-AKI), thereby providing new considerations for the prevention and treatment of SA-AKI. METHODS: The rats were divided into Sham, cecal ligation and puncture (CLP), CLP + vehicle, and CLP + TAK-242 groups. Except the Sham group, a model of CLP-induced sepsis was established in other groups. After 24 h, the indicators related to kidney injury in blood samples were detected. The pathological changes in the kidneys were observed by hematoxylin-eosin staining, and tubular damage was scored. Oxidative stress-related factors, mitochondrial dysfunction-related indicators in each group were measured; the levels of inflammatory factors in serum and kidney tissue of rats were examined. Finally, the expression of proteins related to the TLR4/NF-κB signaling pathway was observed by western blot. RESULTS: Compared with the CLP + vehicle and CLP + TAK-242 groups, the CLP + TAK-242 group reduced blood urea nitrogen (BUN), creatinine (Cr), cystatin-C (Cys-C), reactive oxygen species (ROS), malondialdehyde (MDA), and inflammatory factors levels (p < 0.01), as well as increased superoxide dismutase (SOD) activity of CLP rats (p < 0.01). Additionally, TAK-242 treatment improved the condition of CLP rats that had glomerular and tubular injuries and mitochondrial disorders (p < 0.01). Further mechanism research revealed that TAK-242 can inhibit the TLR4/NF-κB signaling pathway activated by CLP (p < 0.01). Above indicators after TAK-242 treatment were close to those of the Sham group. CONCLUSION: TAK-242 can improve oxidative stress, mitochondrial dysfunction, and inflammatory response by inhibiting the activity of TLR4/NF-κB signaling pathway, thereby preventing rats from SA-AKI.


Assuntos
Injúria Renal Aguda , Doenças Mitocondriais , Sepse , Sulfonamidas , Ratos , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo
5.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542317

RESUMO

The probability of acute kidney injury (AKI) is higher in septic diabetic patients, which is associated with, among other factors, proximal tubular cell (PTC) injury induced by the hypoxic/hyperglycemic/inflammatory microenvironment that surrounds PTCs in these patients. Here, we exposed human PTCs (HK-2 cells) to 1% O2/25 mM glucose/inflammatory cytokines with the aim of studying the role of prostaglandin uptake transporter (PGT) and dipeptidyl peptidase-4 (DPP-4, a target of anti-hyperglycemic agents) as pharmacological targets to prevent AKI in septic diabetic patients. Our model reproduced two pathologically relevant mechanisms: (i) pro-inflammatory PTC activation, as demonstrated by the increased secretion of chemokines IL-8 and MCP-1 and the enhanced expression of DPP-4, intercellular leukocyte adhesion molecule-1 and cyclo-oxygenase-2 (COX-2), the latter resulting in a PGT-dependent increase in intracellular prostaglandin E2 (iPGE2); and (ii) epithelial monolayer injury and the consequent disturbance of paracellular permeability, which was related to cell detachment from collagen IV and the alteration of the cell cytoskeleton. Most of these changes were prevented by the antagonism of PGE2 receptors or the inhibition of COX-2, PGT or DPP-4, and further studies suggested that a COX-2/iPGE2/DPP-4 pathway mediates the pathogenic effects of the hypoxic/hyperglycemic/inflammatory conditions on PTCs. Therefore, inhibitors of PGT or DPP-4 ought to undergo testing as a novel therapeutic avenue to prevent proximal tubular damage in diabetic patients at risk of AKI.


Assuntos
Injúria Renal Aguda , Diabetes Mellitus , Inibidores da Dipeptidil Peptidase IV , Humanos , Ciclo-Oxigenase 2/metabolismo , Diabetes Mellitus/tratamento farmacológico , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Dipeptidil Peptidases e Tripeptidil Peptidases , Prostaglandinas , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Dipeptidil Peptidase 4
6.
JCI Insight ; 9(6)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516890

RESUMO

Sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (Dapa), exhibited nephroprotective effects in patients with chronic kidney disease (CKD). We assessed the efficacy of short-term Dapa administration following acute kidney injury (AKI) in preventing CKD. Male Wistar rats were randomly assigned to Sham surgery, bilateral ischemia for 30 minutes (abbreviated as IR), and IR + Dapa groups. Daily treatment with Dapa was initiated just 24 hours after IR and maintained for only 10 days. Initially, rats were euthanized at this point to study early renal repair. After severe AKI, Dapa promptly restored creatinine clearance (CrCl) and significantly reduced renal vascular resistance compared with the IR group. Furthermore, Dapa effectively reversed the mitochondrial abnormalities, including increased fission, altered mitophagy, metabolic dysfunction, and proapoptotic signaling. To study this earlier, another set of rats was studied just 5 days after AKI. Despite persistent renal dysfunction, our data reveal a degree of mitochondrial protection. Remarkably, a 10-day treatment with Dapa demonstrated effectiveness in preventing CKD transition in an independent cohort monitored for 5 months after AKI. This was evidenced by improvements in proteinuria, CrCl, glomerulosclerosis, and fibrosis. Our findings underscore the potential of Dapa in preventing maladaptive repair following AKI, emphasizing the crucial role of early intervention in mitigating AKI long-term consequences.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Humanos , Masculino , Ratos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Glucose , Ratos Wistar , Insuficiência Renal Crônica/tratamento farmacológico , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo , Sódio/metabolismo , Transportador 2 de Glucose-Sódio/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico
7.
Bioorg Chem ; 146: 107303, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521012

RESUMO

Arylpropionic ester scaffold was found as anti-inflammatory agents for the treatment and prevention of acute kidney injury (AKI). To further study the structure-activity relationship (SAR) of this scaffold, a series of acryl amides were designed, synthesized, and evaluated their anti-inflammation. Of these, compound 9d displayed the protective effect on renal tubular epithelial cells to significantly enhance the survival rate through inhibiting NF-κB phosphorylation and promoting cell proliferation in cisplatin-induced HK2 cells. Furthermore, 9d can interact with TLR4 to inhibit TLR4/STING/NF-κB pathway in the RAW264.7 cell. In vivo AKI mice model, 9d significantly downregulated the level of serum creatinine (Scr), blood urea nitrogen (BUN) and the inflammatory factors (IL-1ß, IL-6, TNF-α) to improve kidney function. Morphological and KIM-1 analyses showed that 9d alleviated cisplatin-induced tubular damage. In a word, 9d was a promising lead compound for preventive and therapeutic of AKI.


Assuntos
Injúria Renal Aguda , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Cisplatino/farmacologia , Receptor 4 Toll-Like/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Fator de Necrose Tumoral alfa/farmacologia , Rim/metabolismo
8.
Biochem Biophys Res Commun ; 709: 149709, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38554603

RESUMO

Ischemia-reperfusion (I/R) leads to tissue damage in transplanted kidneys, resulting in acute kidney injury (AKI) and chronic graft dysfunction, which critically compromises transplant outcomes, such as graft loss. Linaclotide, a guanylate cyclase C agonist clinically approved as a laxative, has recently been identified to exhibit renoprotective effects in a chronic kidney disease (CKD) model. This study evaluates the therapeutic effects of linaclotide on AKI triggered by I/R in a rat model with an initial comparison with other laxatives. Here, we show that linaclotide administration resulted in substantial reduction in serum creatinine levels, reflective of enhanced renal function. Histological examination revealed diminished tubular damage, and Sirius Red staining confirmed less collagen deposition, collectively indicating preserved structural integrity and mitigation of fibrosis. Further analysis demonstrated lowered expression of TGF-ß and associated fibrotic markers, α-SMA, MMP2, and TIMP1, implicating the downregulation of the fibrogenic TGF-ß pathway by linaclotide. Furthermore, one day after I/R insult, linaclotide profoundly diminished macrophage infiltration and suppressed critical pro-inflammatory cytokines such as TNF, IL-1ß, and IL-6, signifying its potential to disrupt initial inflammatory mechanisms integral to AKI pathology. These findings suggest that linaclotide, with its established safety profile, could extend its benefits beyond gastrointestinal issues and potentially serve as a therapeutic intervention for organ transplantation. Additionally, it could provide immediate and practical insights into selecting laxatives for managing patients with AKI or CKD, regardless of the cause, and for those receiving dialysis or transplant therapy.


Assuntos
Injúria Renal Aguda , Peptídeos , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Laxantes/metabolismo , Laxantes/farmacologia , Laxantes/uso terapêutico , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Rim/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Insuficiência Renal Crônica/patologia , Isquemia/patologia , Reperfusão , Fator de Crescimento Transformador beta/metabolismo , Fibrose
9.
Clin Immunol ; 261: 110167, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38453127

RESUMO

Excessive inflammatory response and increased oxidative stress play an essential role in the pathophysiology of ischemia/reperfusion (I/R)-induced acute kidney injury (IRI-AKI). Emerging evidence suggests that lipoxin A4 (LXA4), as an endogenous negative regulator in inflammation, can ameliorate several I/R injuries. However, the mechanisms and effects of LXA4 on IRI-AKI remain unknown. In this study, A bilateral renal I/R mouse model was used to evaluate the role of LXA4 in wild-type, IRG1 knockout, and IRAK-M knockout mice. Our results showed that LXA4, as well as 5-LOX and ALXR, were quickly induced, and subsequently decreased by renal I/R. LXA4 pretreatment improved renal I/R-induced renal function impairment and renal damage and inhibited inflammatory responses and oxidative stresses in mice kidneys. Notably, LXA4 inhibited I/R-induced the activation of TLR4 signal pathway including decreased phosphorylation of TAK1, p36, and p65, but did not affect TLR4 and p-IRAK-1. The analysis of transcriptomic sequencing data and immunoblotting suggested that innate immune signal molecules interleukin-1 receptor-associated kinase-M (IRAK-M) and immunoresponsive gene 1 (IRG1) might be the key targets of LXA4. Further, the knockout of IRG1 or IRAK-M abolished the beneficial effects of LXA4 on IRI-AKI. In addition, IRG1 deficiency reversed the up-regulation of IRAK-M by LXA4, while IRAK-M knockout had no impact on the IRG1 expression, indicating that IRAK-M is a downstream molecule of IRG1. Mechanistically, we found that LXA4-promoted IRG1-itaconate not only enhanced Nrf2 activation and increased HO-1 and NQO1, but also upregulated IRAK-M, which interacted with TRAF6 by competing with IRAK-1, resulting in deactivation of TLR4 downstream signal in IRI-AKI. These data suggested that LXA4 protected against IRI-AKI via promoting IRG1/Itaconate-Nrf2 and IRAK-M-TRAF6 signaling pathways, providing the rationale for a novel strategy for preventing and treating IRI-AKI.


Assuntos
Injúria Renal Aguda , Lipoxinas , Traumatismo por Reperfusão , Succinatos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/farmacologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/farmacologia , Transdução de Sinais , Rim/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/prevenção & controle
10.
BMJ Open ; 14(3): e076142, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490660

RESUMO

OBJECTIVE: Dipeptidase-1 (DPEP-1) is a recently discovered leucocyte adhesion receptor for neutrophils and monocytes in the lungs and kidneys and serves as a potential therapeutic target to attenuate inflammation in moderate-to-severe COVID-19. We aimed to evaluate the safety and efficacy of the DPEP-1 inhibitor, LSALT peptide, to prevent specific organ dysfunction in patients hospitalised with COVID-19. DESIGN: Phase 2a randomised, placebo-controlled, double-blinded, trial. SETTING: Hospitals in Canada, Turkey and the USA. PARTICIPANTS: A total of 61 subjects with moderate-to-severe COVID-19. INTERVENTIONS: Randomisation to LSALT peptide 5 mg intravenously daily or placebo for up to 14 days. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary endpoint was the proportion of subjects alive and free of respiratory failure and/or the need for renal replacement therapy (RRT). Numerous secondary and exploratory endpoints were assessed including ventilation-free days, and changes in kidney function or serum biomarkers. RESULTS: At 28 days, 27 (90.3%) and 28 (93.3%) of subjects in the placebo and LSALT groups were free of respiratory failure and the need for RRT (p=0.86). On days 14 and 28, the number of patients still requiring more intensive respiratory support (O2 ≥6 L/minute, non-invasive or invasive mechanical ventilation or extracorporeal membrane oxygenation) was 6 (19.4%) and 3 (9.7%) in the placebo group versus 2 (6.7%) and 2 (6.7%) in the LSALT group, respectively (p=0.14; p=0.67). Unadjusted analysis of ventilation-free days demonstrated 22.8 days for the LSALT group compared with 20.9 in the placebo group (p=0.4). LSALT-treated subjects had a significant reduction in the fold expression from baseline to end of treatment of serum CXCL10 compared with placebo (p=0.02). Treatment-emergent adverse events were similar between groups. CONCLUSION: In a Phase 2 study, LSALT peptide was demonstrated to be safe and tolerated in patients hospitalised with moderate-to-severe COVID-19. TRIAL REGISTRATION NUMBER: NCT04402957.


Assuntos
Injúria Renal Aguda , COVID-19 , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , SARS-CoV-2 , Estudo de Prova de Conceito , Método Duplo-Cego , Síndrome do Desconforto Respiratório/prevenção & controle , Injúria Renal Aguda/prevenção & controle , Resultado do Tratamento
11.
Ren Fail ; 46(1): 2330629, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38494199

RESUMO

Acetaminophen (APAP)-induced acute kidney injury (APAP-AKI) has turned into one of reasons for clinic obtained renal insufficiency. Magnesium hydride (MgH2), as a solid-state hydrogen source, might be potentially applied in clinical practice. The current study aimed to investigate the protective effect of MgH2 against APAP-AKI. The results showed that MgH2 improved renal function and histological injury in mice of APAP-AKI. MgH2 also had protective effects on APAP-induced cytotoxicity in HK-2 cells. In addition, the increased level of reactive oxygen species (ROS) and expressions of inflammatory cytokines (TNF-α and IL-1ß) and pro-apoptotic factors (Bad, Bax, Caspase3, and CytC) induced by APAP were downregulated with MgH2 treatment. Furthermore, the expressions of molecules related to TXNIP/NLRP3/NF-κB pathway (TXNIP, NLRP3, NF-κB p65 and p-NF-κB p65) in renal tissues and HK-2 cells were enhanced by APAP overdose, which were reduced by MgH2 administration. Collectively, this study indicated that MgH2 protects against APAP-AKI by alleviating oxidative stress, inflammation and apoptosis via inhibition of TXNIP/NLRP3/NF-κB signaling pathway.


Assuntos
Injúria Renal Aguda , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Acetaminofen/toxicidade , Magnésio , Estresse Oxidativo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle
12.
FASEB J ; 38(6): e23575, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38530256

RESUMO

Ischemia-reperfusion injury (IRI) is one of the primary clinical causes of acute kidney injury (AKI). The key to IRI lies in immune-inflammatory damage, where dendritic cells (DCs) play a central role in eliciting immune responses within the context of inflammation induced by ischemia-reperfusion. Our previous study has confirmed that delayed ischemic preconditioning (DIPC) can reduce the kidney injury by mediating DCs to regulate T-cells. However, the clinical feasibility of DIPC is limited, as pre-clamping of the renal artery is not applicable for the prevention and treatment of ischemia-reperfusion acute kidney injury (I/R-AKI) in clinical patients. Therefore, the infusion of DCs as a substitute for DIPC presents a more viable strategy for preventing renal IRI. In this study, we further evaluated the impact and mechanism of infused tolerogenic CD11c+DCs on the kidneys following IRI by isolating bone marrow-derived dendritic cells and establishing an I/R-AKI model after pre-infusion of DCs. Renal function was significantly improved in the I/R-AKI mouse model after pre-infused with CD11c+DCs. The pro-inflammatory response and oxidative damage were reduced, and the levels of T helper 2 (Th2) cells and related anti-inflammatory cytokines were increased, which was associated with the reduction of autologous DCs maturation mediated by CD11c+DCs and the increase of regulatory T-cells (Tregs). Next, knocking out CD11c+DCs, we found that the reduced immune protection of tolerogenic CD11c+DCs reinfusion was related to the absence of own DCs. Together, pre-infusion of tolerogenic CD11c+DCs can replace the regulatory of DIPC on DCs and T-cells to alleviate I/R-AKI. DC vaccine is expected to be a novel avenue to prevent and treat I/R-AKI.


Assuntos
Injúria Renal Aguda , Precondicionamento Isquêmico , Traumatismo por Reperfusão , Humanos , Animais , Camundongos , Rim , Isquemia , Injúria Renal Aguda/prevenção & controle , Traumatismo por Reperfusão/prevenção & controle , Reperfusão , Células Dendríticas
13.
Ren Fail ; 46(1): 2331062, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38515271

RESUMO

Cardiopulmonary bypass (CPB) is a common technique in cardiac surgery but is associated with acute kidney injury (AKI), which carries considerable morbidity and mortality. In this review, we explore the range and definition of CPB-associated AKI and discuss the possible impact of different disease recognition methods on research outcomes. Furthermore, we introduce the specialized equipment and procedural intricacies associated with CPB surgeries. Based on recent research, we discuss the potential pathogenesis of AKI that may result from CPB, including compromised perfusion and oxygenation, inflammatory activation, oxidative stress, coagulopathy, hemolysis, and endothelial damage. Finally, we explore current interventions aimed at preventing and attenuating renal impairment related to CPB, and presenting these measures from three perspectives: (1) avoiding CPB to eliminate the fundamental impact on renal function; (2) optimizing CPB by adjusting equipment parameters, optimizing surgical procedures, or using improved materials to mitigate kidney damage; (3) employing pharmacological or interventional measures targeting pathogenic factors.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Humanos , Ponte Cardiopulmonar/efeitos adversos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Estresse Oxidativo , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle
14.
J Physiol ; 602(8): 1835-1852, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38529522

RESUMO

Acute kidney injury (AKI) often triggers physiological processes aimed at restoring renal function and architecture. However, this response can become maladaptive, leading to nephron loss and fibrosis. Although the therapeutic effects of resveratrol (RSV) are well established, its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. This study assessed whether transient administration of RSV following ischaemia-reperfusion injury (IRI) could prevent the progression to CKD. Forty-one male Wistar rats were assigned randomly to sham surgery, bilateral renal ischaemia for 30 min (IR) or IR+RSV. The RSV treatment commenced 24 h after IRI and continued for 10 days. The rats were studied for either 10 days or 5 months, after which kidney function and structure were evaluated. Mitochondrial homeostasis, oxidant defence and renal inflammation state were also evaluated. Despite having the same severity of AKI, rats receiving RSV for 10 days after IRI exhibited significant improvement in kidney histological injury and reduced inflammation, although renal haemodynamic recovery was less pronounced. Resveratrol effectively prevented the elevation of tubular injury-related molecules and profibrotic signalling with reduced myofibroblast proliferation. Furthermore, RSV substantially improved the antioxidant response and mitochondrial homeostasis. After 5 months, RSV prevented the transition to CKD, as evidenced by the prevention of progressive proteinuria, renal dysfunction and tubulointerstitial fibrosis. This study demonstrates that a brief treatment with RSV following IRI is enough to prevent maladaptive repair and the development of CKD. Our findings highlight the importance of the early days of reperfusion, indicating that maladaptive responses can be reduced effectively following severe AKI. KEY POINTS: Physiological processes activated after acute kidney injury (AKI) can lead to maladaptive responses, causing nephron loss and fibrosis. Prophylactic renoprotection with resveratrol (RSV) has been described in experimental AKI, but its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. In this study, we found that histological tubular injury persists 10 days after ischaemia-reperfusion injury and contributes to a failed repair phenotype in proximal tubular cells. Short-term RSV intervention influenced the post-ischaemic repair response and accelerated tubular recovery by reducing oxidative stress and mitochondrial damage. Furthermore, RSV targeted inflammation and profibrotic signalling during the maladaptive response, normalizing both processes. Resveratrol effectively prevented AKI-to-CKD transition even 5 months after the intervention. The study serves as a proof of concept, proposing RSV as a valuable candidate for further translational clinical studies to mitigate AKI-to-CKD transition.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Ratos Wistar , Rim/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Inflamação/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/complicações , Fibrose
15.
Eur J Pharmacol ; 970: 176507, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492877

RESUMO

BACKGROUND AND AIMS: Acute kidney injury (AKI) due to renal ischemia-reperfusion injury (RIRI) is associated with high morbidity and mortality, with no renoprotective drug available. Previous research focused on single drug targets, yet this approach has not reached translational success. Given the complexity of this condition, we aimed to identify a disease module and apply a multitarget network pharmacology approach. METHODS: Identification of a disease module with potential drug targets was performed utilizing Disease Module Detection algorithm using NADPH oxidases (NOXs) as seeds. We then assessed the protective effect of a multitarget network pharmacology targeting the identified module in a rat model of RIRI. Rats were divided into five groups; sham, RIRI, and RIRI treated with setanaxib (NOX inhibitor, 10 mg/kg), etanercept (TNF-α inhibitor, 10 mg/kg), and setanaxib and etanercept (5 mg/kg each). Kidney functions, histopathological changes and oxidative stress markers (MDA and reduced GSH) were assessed. Immunohistochemistry of inflammatory (TNF-α, NF-κB) apoptotic (cCasp-3, Bax/Bcl 2), fibrotic (α-SMA) and proteolysis (MMP-9) markers was performed. RESULTS: Our in-silico analysis yielded a disease module with TNF receptor 1 (TNFR1A) as the closest target to both NOX1 and NOX2. Targeting this module by a low-dose combination of setanaxib, and etanercept, resulted in a synergistic effect and ameliorated ischemic AKI in rats. This was evidenced by improved kidney function and reduced expression of inflammatory, apoptotic, proteolytic and fibrotic markers. CONCLUSIONS: Our findings show that applying a multitarget network pharmacology approach allows synergistic renoprotective effect in ischemic AKI and might pave the way towards translational success.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Ratos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Etanercepte/farmacologia , Rim , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Isquemia/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle
16.
Coron Artery Dis ; 35(3): 186-192, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411168

RESUMO

INTRODUCTION: Contrast-induced nephropathy (CIN) is a common complication after percutaneous coronary intervention (PCI). There is conflicting evidence regarding efficacy of nicorandil in CIN prevention. With respect to ranolazine, there is physiological possibility as well as data in animal study regarding its protective effect against CIN; there is, however, no human data till date. AIM AND OBJECTIVES: To assess the efficacy of nicorandil and ranolazine in preventing CIN. The secondary endpoint was to measure difference in postprocedure acute kidney injury (AKI) incidence across groups. Also, patients were followed up till 6 months for major adverse events. MATERIAL AND METHODS: This single-center randomized controlled study included 315 patients of coronary artery disease with mild-to-moderate renal dysfunction undergoing elective PCI. Eligible patients were assigned to either nicorandil (n = 105), ranolazine (n = 105) or control group (n = 105) in 1 : 1 : 1 ratio by block randomization. All enrolled patients were given intravenous sodium chloride at rate of 1.0 mL/kg/h (0.5 mL/kg/h for patients with left ventricular ejection fraction <45%) from 6 h before procedure till 12 h after procedure. Iso-osmolar contrast agent (iodixanol) was used for all patients. In addition to hydration, patients in nicorandil group received oral nicorandil (10 mg, 3 times/d) and those in ranolazine group received oral ranolazine (1000 mg, 2 times/d) 1 day before procedure and for 2 days after PCI. Patients in control group received only hydration. RESULTS: Total number of CIN was 34 (10.7%), which included 19 (18.1%) in control, 8 (7.6%) in nicorandil and 7 (6.6%) in ranolazine group. There was significant association of CIN reduction across groups ( P  = 0.012). On pairwise comparison also, there was significant benefit across control and ranolazine as well as control and nicorandil ( P  < 0.025). There was numerically higher incidence of AKI in controls; the difference, however, did not reach statistical significance after applying Bonferroni correction ( P  = 0.044). Over 6-month follow-up, adverse events were similar across groups. CONCLUSION: While this study adds to existing literature that supports role for nicorandil in CIN prevention, the efficacy of ranolazine in protecting against CIN has been demonstrated in humans for the first time.


Assuntos
Injúria Renal Aguda , Intervenção Coronária Percutânea , Humanos , Nicorandil/uso terapêutico , Ranolazina/uso terapêutico , Angiografia Coronária/efeitos adversos , Angiografia Coronária/métodos , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/métodos , Volume Sistólico , Função Ventricular Esquerda , Meios de Contraste/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle
17.
Eur J Pharmacol ; 969: 176425, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387717

RESUMO

Acute kidney injury (AKI) is a critical condition often associated with systemic inflammation and dysregulated gut microbiota. This study aimed to investigate the effects of the C5a receptor antagonist W54011 on lipopolysaccharide (LPS)-induced AKI, focusing on the colon's C5a/C5a receptor pathway, intestinal barrier integrity, and gut microbiota. Our findings demonstrate that W54011 effectively ameliorated kidney injury in the LPS-induced AKI model by selectively inhibiting the colon's C5a/C5a receptor signalling pathway. Additionally, C5a receptor blockade resulted in the inhibition of colonic inflammation and the reconstruction of the intestinal mucosal barrier. Furthermore, W54011 administration significantly impacted the composition and stability of the gut microbiota, restoring the abundance of dominant bacteria to levels observed in the normal state of the intestinal flora and reducing the abundance of potentially harmful bacterial groups. In conclusion, W54011 alleviates LPS-induced AKI by modulating the interplay between the colon, gut microbiota, and kidneys. It preserves the integrity of the intestinal barrier and reinstates gut microbiota, thereby mitigating AKI symptoms. These findings suggest that targeting the colon and gut microbiota could be a promising therapeutic strategy for AKI treatment.


Assuntos
Injúria Renal Aguda , Compostos de Anilina , Microbioma Gastrointestinal , Tetra-Hidronaftalenos , Humanos , Lipopolissacarídeos , Receptor da Anafilatoxina C5a , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Rim , Inflamação , Colo
18.
J Pediatr Gastroenterol Nutr ; 78(2): 350-359, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374552

RESUMO

OBJECTIVES: Midodrine, an oral α-1-adrenergic receptor agonist, counters arterial hypovolemia and reduces complications in adult patients with cirrhosis. This randomized controlled trial (RCT) aimed to assess the efficacy and safety of midodrine in preventing complications and improving survival in children with cirrhosis and ascites who are awaiting liver transplantation (LT). METHODS: This open-label RCT conducted from January 2022 to May 2023 included children under 18 years with cirrhosis and ascites. Patients were randomized to receive either midodrine plus standard medical therapies (SMTs) or SMT alone. The primary outcome measure was the incidence of cirrhosis-related complications within 6 months. RESULTS: Thirty-five subjects were enrolled and randomized. Patients in the midodrine arm had a lower incidence of new-onset acute kidney injury (AKI) compared with the SMT arm (11.1% vs. 41.2%). Patients in the midodrine arm showed a decline in serum creatinine and improvement in glomerular filtration rate, whereas no changes were observed in the SMT arm. There was a lower incidence of new-onset hyponatremia in the midodrine arm (20% vs. 56%). Midodrine led to reduction in plasma rennin activity (PRA) and improvement in systemic hemodynamics. There was no difference in the rate of resolution of ascites, recurrence of ascites, requirement of therapeutic paracentesis, cumulative albumin infusion requirement, episodes of spontaneous bacterial peritonitis, and hepatic encephalopathy between the two arms. CONCLUSION: Midodrine, when added to SMT, was effective in reducing the incidence of new-onset AKI and hyponatremia in pediatric cirrhotics awaiting LT. It also improved systemic hemodynamics and showed a trend towards reducing PRA.


Assuntos
Injúria Renal Aguda , Hiponatremia , Transplante de Fígado , Midodrina , Adulto , Humanos , Criança , Adolescente , Midodrina/uso terapêutico , Transplante de Fígado/efeitos adversos , Ascite/tratamento farmacológico , Ascite/etiologia , Hiponatremia/complicações , Hiponatremia/tratamento farmacológico , Resultado do Tratamento , Cirrose Hepática/complicações , Cirrose Hepática/cirurgia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle
19.
Exp Gerontol ; 187: 112372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301878

RESUMO

Contrast-induced acute kidney injury (CI-AKI) is the third leading cause of hospital-acquired acute kidney injury. Cellular senescence is associated with CI-AKI. P16INK4a (p16) is a cell cycle regulator and link to aging and senescence. We found that the expression of p16 was elevated in CI-AKI renal tissues, however its role in CI-AKI remains insufficiently understood. In this study, we used p16 knockout (p16KO) mice and wild-type (WT) littermates to establish CI-AKI mice model to elucidate the impact of p16 on CI-AKI. The results showed that serum creatinine (SCr), blood urea nitrogen (BUN), and serum neutrophil gelatinase-associated lipocalin (NGAL) levels were markedly reduced in p16KO CI-AKI mice. Both immunohistochemistry and western blot analyses confirmed that p16 knockout alleviated renal cell apoptosis. Furthermore, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were attenuated by downregulating NLRP3 and NF-κB inflammasomes. Additionally, ROS levels were diminished via activating Nrf2/Keap-1 pathway in p16KO CI-AKI mice. Collectively, our findings suggest that p16 deletion exerts protective effects against apoptosis, inflammation, and oxidative stress in CI-AKI mice model, p16 deletion might be a potential therapeutic strategy for ameliorating CI-AKI.


Assuntos
Injúria Renal Aguda , Meios de Contraste , Inibidor p16 de Quinase Dependente de Ciclina , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Apoptose , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inflamação/metabolismo , Rim/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Meios de Contraste/efeitos adversos
20.
Clin Sci (Lond) ; 138(5): 235-249, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38357976

RESUMO

Contrast-induced nephropathy (CIN) is a leading cause of hospital-acquired acute kidney injury (AKI). Recently, ferroptosis was reported to be crucial for AKI pathogenesis. Our previous studies indicated antioxidant tetramethylpyrazine (TMP) prevent CIN in vivo. However, whether ferroptosis is involved in TMP nephroprotective mechanism against CIN is unclear. In the present study, we investigated the role of renal tubular epithelial cell ferroptosis in TMP reno-protective effect against CIN and the molecular mechanisms by which TMP regulates ferroptosis. Classical contrast-medium, Iohexol, was used to construct CIN models in rats and HK-2 cells. Results showed that tubular cell injury was accompanied by ferroptosis both in vivo and in vitro, including the typical features of ferroptosis, Fe2+ accumulation, lipid peroxidation and decreased glutathione peroxidase 4 (GPX4). Ferroptosis inhibition by classic inhibitors Fer-1 and DFO promoted cell viability and reduced intracellular ROS production. Additionally, TMP significantly inhibited renal dysfunction, reduced AKI biomarkers, prevented ROS production, inhibited renal Fe2+ accumulation and increased GPX4 expression. Expressions of various proteins associated with iron ion metabolism, including transferrin receptor (TFRC), divalent metal transporter 1, iron-responsive element binding protein 2, ferritin heavy chain 1, ferroportin 1, and heat shock factor binding protein 1, were examined using mechanistic analyses. Among these, TFRC changes were the most significant after TMP pretreatment. Results of siRNA knockdown and plasmid overexpression of TFRC indicated that TFRC is essential for TMP to alleviate ferroptosis and reduce LDH release, Fe2+ accumulation and intracellular ROS. Our findings provide crucial insights about the potential of TMP in treating AKI associated with ferroptosis.


Assuntos
Injúria Renal Aguda , Ferroptose , Pirazinas , Animais , Ratos , Espécies Reativas de Oxigênio , Células Epiteliais , Receptores da Transferrina/genética , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...